Wave boundary elements: a theoretical overview presenting applications in scattering of short waves
نویسندگان
چکیده
It is well known that the use of conventional discrete numerical methods of analysis (FEM and BEM) in the solution of Helmholtz and elastodynamic wave problems is limited by an upper bound on frequency. The current work addresses this problem by incorporating the underlying wave behaviour of the solution into the formulation of a boundary element, using ideas arising from the Partition of Unity finite element methods. The resulting ‘wave boundary elements’ have been found to provide highly accurate solutions (10 digit accuracy in comparison with analytical solutions is not uncommon). Moreover, excellent results are presented for models in which each element may span many full wavelengths. It has been found that the wave boundary elements have a requirement to use only around 2.5 degrees of freedom per wavelength, instead of the 8–10 degrees of freedom per wavelength required by conventional direct collocation elements, extending the supported frequency range for any given computational resources by a factor of three for 2D problems, or by a factor of 10–15 for 3D problems. This is expected to have a significant impact on the range of simulations available to engineers working in acoustic simulation. This paper presents an outline of the formulation, a description of the most important considerations for numerical implementation, and a range of application examples. q 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
مدل سازی امواج برخوردی به موج شکن مستغرق با استفاده از روش المان مرزی
The principle included in construction of submerged breakwater is to protect beach from morphological changes and the sediment transport against incoming waves. In the present study, boundary element method (BEM) is employed for solving the scattering problem of incident wave passing the vertical and inclined submerged breakwaters with rigid boundaries. The boundary element integral equation wi...
متن کاملJointed Rock Mass Effects on the Seismic Waves Scattering from the Canyon Sites in the Dam's Support
Seismic study of canyon sites has always been one of the important fields of seismic studies because of massive structures such as dams that are built in such sites. Jointed rock mass in rock canyon sites is one of the main site effects that can change the seismic waves. In this research, we studied the influence of this factor on the scattering of seismic waves. To fulfil this goal, we employe...
متن کاملTheoretical and Experimental Studies of Upright Perforated Wave Filters
Liu et al. (1987) proposed a theoretical solution for scattering of waves through a permeable dissipation region. On the basis of bulk dissipation of the incident wave energy, this method is extended to evaluate the reflection and transmission coefficients of waves through a wave filter composed of rows of perforated sheets aligned normally to the direction of wave propagation. The results of t...
متن کاملExact analytical approach for free longitudinal vibration of nanorods based on nonlocal elasticity theory from wave standpoint
In this paper, free longitudinal vibration of nanorods is investigated from the wave viewpoint. The Eringen’s nonlocal elasticity theory is used for nanorods modelling. Wave propagation in a medium has a similar formulation as vibrations and thus, it can be used to describe the vibration behavior. Boundaries reflect the propagating waves after incident. Firstly, the governing quation of nanoro...
متن کاملTheoretical Analysis of the Optical Properties of Gold Nanoparticles Using DDA Approximation
This article describes a study, using numerical simulation, of the optical properties of nano particles as a function of their size. Many methods introduced to simulate and calculate the interaction of light and particle, such as Mie analysis, boundary element and finite element methods. The Discrete Dipole Approximation (DDA), wherein a target geometry is modeled as a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003